Optimal transport for multifractal random measures. Applications
نویسندگان
چکیده
In this paper, we study optimal transportation problems for multifractal random measures. Since these measures are much less regular than optimal transportation theory requires, we introduce a new notion of transportation which is intuitively some kind of multistep transportation. Applications are given for construction of multifractal random changes of times and to the existence of random metrics, the volume forms of which coincide with the multifractal random measures. This study is motivated by recent problems in the KPZ context.
منابع مشابه
KPZ formula for log-infinitely divisible multifractal random measures
We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [1]. If M is a non degenerate multifractal measure with associated metric ρ(x, y) = M([x, y]) and structure function ζ , we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimρH with respect to ρ...
متن کاملMultidimensional Multifractal Random Measures
The purpose of this paper is to introduce a natural multidimensional generalization (MMRM) of the one dimensional multifractal random measures (MRM) introduced by Bacry and Muzy in [1]. The measures M we introduce are different from zero, homogeneous in space, isotropic and satisfy the following exact scale invariance relation: if T denotes some given cutoff parameter then the following equalit...
متن کاملA multifractal random walk
We introduce a class of multifractal processes, referred to as Multifractal Random Walks (MRWs). To our knowledge, it is the first multifractal processes with continuous dilation invariance properties and stationary increments. MRWs are very attractive alternative processes to classical cascade-like multifractal models since they do not involve any particular scale ratio. The MRWs are indexed b...
متن کاملRenewal of Singularity Sets of Statistically Self-similar Measures
This paper investigates new properties concerning the multifractal structure of a class of statistically self-similar measures. These measures include the well-known Mandelbrot multiplicative cascades, sometimes called independent random cascades. We evaluate the scale at which the multifractal structure of these measures becomes discernible. The value of this scale is obtained through what we ...
متن کاملMultifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws.
We define a large class of continuous time multifractal random measures and processes with arbitrary log infinitely divisible exact or asymptotic scaling law. These processes generalize within a unified framework both the recently defined log-normal multifractal random walk [J.F. Muzy, J. Delour, and E. Bacry, Eur. J. Phys. B 17, 537 (2000), E. Bacry, J. Delour, and J.F. Muzy, Phys. Rev. E 64, ...
متن کامل